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The synthesis of a series of pyrrole-based polycyclic heterocycles has been accomplished through an
intramolecular 1,3-dipolar cycloaddition reaction of an azomethine ylide with the dipolarophile derived
from Baylis–Hillman adducts. Improved yields of the products were obtained when the reaction was car-
ried out under microwave conditions.

� 2009 Elsevier Ltd. All rights reserved.
Intramolecular [3+2] cycloaddition of azomethine ylide has
been used widely to construct complex cyclic systems from rela-
tively simple precursors.1 This mode of cycloaddition simulta-
neously constructs two carbon–carbon bonds and forms complex
ring systems with regio- and stereocontrol.2–5 a-Methylene-b-hy-
droxy esters 1a–c are easily prepared by the Baylis–Hillman reac-
tion6,7 and are well utilized as versatile building blocks for the
stereoselective construction of natural products, including alka-
loids,8 macrolides,9 terpenoids,10–12 and pheromones.13–15

Multifunctional allylic compounds such as 1a–c16 and deriva-
tives 2a–c17 are useful scaffolds for the synthesis of a wide range
of complex molecular frameworks.

With the objective of expanding the scope of these allyl halides
in synthetic organic chemistry, we have used the allyl bromides
derived from Baylis–Hillman adducts as dipolarophiles for intra-
molecular 1,3-dipolar cycloaddition.

In continuation of our research in the area of 1,3-dipolar cyclo-
addition,18–29 we herein report for the first time, the synthesis of
pyrrolo[2,3-a]pyrrolizine and pyrrolizine[2,3-a]pyrrolizine using
allyl bromides derived from Baylis–Hillman derivatives in an intra-
molecular cycloaddition reaction.

The treatment of methyl 3-acetoxy-3-phenyl-2-methylenepro-
panoate 1a–c30 with pyrrole-2-carbaldehyde 3 in the presence of
K2 CO3/dry DMF at 80 �C for 6 h gave moderate yields of the prod-
ucts 4a–c. However, a synthesis of the same products can be
accomplished in good yields by treating Baylis–Hillman bromide
derivatives 2a–c31 with pyrrole 2-carbaldehyde in the presence
of K2 CO3/dry DMF in 3 h.32
ll rights reserved.
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The structure of N-allyl pyrrole derivatives was confirmed by
spectroscopic analysis.

With N-alkenyl aldehyde 4a–c in hand, the cycloaddition reac-
tions were carried out with the unstabilized azomethine ylide gen-
erated by decarboxylative condensation with various secondary
amino acids. The condensation of 4a–c with sarcosine 5 in reflux-
ing toluene under Dean–Stark reaction conditions, generated azo-
methine ylide that underwent neat intramolecular cycloaddition
to yield cis-adducts 6a–c in moderate yields in all cases.33,34

When the same reaction was extended with proline and thia-
zolidine carboxylic acid, we obtained a series of novel pyrrolizidine
and thiopyrrolizidine heterocycles in good yield. The structures of
these compounds were also established on the basis of their spec-
troscopic data (Scheme 1).

To improve the yield, we carried out the reaction under two dif-
ferent conditions. Thus, the reactions of 4a–c with sarcosine, pro-
line, and thiazolidine carboxylic acid in toluene under reflux
afforded cycloadducts 6a–c in moderate yields in all cases, but re-
quired long reaction times and higher temperature.

When the same reactions were carried out under microwave
irradiation in a toluene solvent, there was a dramatic increase in
the yields of the products with a decrease in reaction time. Under
these conditions, cycloadducts were obtained in good yields (79–
85%) with high regio- and stereoselectivity.35 The results are sum-
marized in Table 1.

In conclusion, we have developed a simple method for the syn-
thesis of a variety of polycyclic heterocycles by 1,3-dipolar cyclo-
addition using Baylis–Hillman adduct derivatives as
dipolarophiles. We have observed that the reaction can be carried
out more efficiently to give good yields of products in short reac-
tion times under microwave conditions.
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Scheme 1.

Table 1
Synthesis of pyrrole[2,3-a]pyrrolizine/pyrrolizine[2,3-a]pyrrolizine derivatives using Method A and Method B

Entry Pyrrole[2,3-a]pyrrolizine/pyrrolizine[2,3-a]pyrrolizine Method A Method B

Time (h) Yield (%) Time (h) Yield (%)

1 6a 2.0 65 3.5 85
2 6b 3.0 56 4.0 75
3 6c 3.5 59 4.0 79
4 9a 2.0 55 2 87
5 9b 2.5 61 2.5 85
6 9c 3.0 63 2.5 78
7 9d 3.0 51 2 84
8 9e 3.5 48 2.5 81
9 9f 4.0 48 2.5 78

Method A: toluene reflux.
Method B: toluene under microwave irradiation.
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